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Abstract: - This work aims to describe the numerical implementation of the Lax and Friedrichs, Lax and 

Wendroff TVD, Boris and Book, Beam and Warming and MacCormack, on a finite volume and structured 

spatial discretization contexts, to solve the Euler equations in two-dimensions. The Lax and Wendroff 

algorithm was implemented according to the TVD formulation of Yee. The Beam and Warming scheme was 

implemented only in its explicit version. Hence, it is possible to distinguish four categories of algorithms 

studied in this work: symmetrical (Lax and Friedrichs and Beam and Warming), FCT (Boris and Book), 

Predictor/Corrector (MacCormack) and TVD (Lax and Wendroff). They are applied to the solution of the 

steady state problem of the moderate supersonic flow along a compression corner. A spatially variable time 

step procedure is employed to accelerate the convergence of the numerical methods to the steady state 

condition. This procedure has demonstrated a meaningful gain in terms of convergence ratio, as reported by 

Maciel. The results have demonstrated that the Beam and Warming scheme, using the nonlinear dissipation 

operator, provides the best results in terms of quality (good capture of shock wave thickness and wall pressure 

profile) and quantity (good prediction of the oblique shock wave angle). 

 

Key-Words: - Symmetrical schemes, FCT scheme, Predictor/Corrector scheme, TVD scheme, Finite volumes, 

Euler equations, Two-dimensions. 

 

1 Introduction 
This paper is a review of the initial numerical 

methods applied to the solution of the Euler 

equations. The objective of this work is to provide 

anyone with the knowledge employed in the initial 

development of the numerical methods applied to 

capture flow discontinuities. Symmetrical, Flux-

Corrected Transport (FCT), Predictor/Corrector and 

TVD are the types of numerical methods studied in 

this research. The first works in the CFD 

community involving fluid dynamics, one-

dimensional case, date from 1950. The works of [1] 

and [2] were the precursors of the modern 

algorithms in CFD. Some comments about 

important algorithms developed since 1950 to 1990 

are described below: 

In [1], the first representative schemes of the 

modern development in the field of numerical 

discretization of the Euler equations were presented. 

They were known as the schemes of Lax or Lax and 

Friedrichs ([1]). They are not applied in their 

original form any longer, due to their poor first-

order accuracy, but several variants with improved 

accuracy are still in use. The basic idea behind the 

scheme of [1] was to stabilize the explicit, unstable 

central scheme obtained from a central differencing 

of the first derivative of the flux term. With this in 

mind, second order dissipation was introduced in the 

scheme, stabilizing it, but damaging severely the 

solution quality. A corrected viscosity scheme was 

constructed to improve the results and reach 

asymptotically second order accuracy. 

[2] emphasized that the limitation of the speed 

and memory of calculating machines placed an 

upper bound on the number of mesh points that 

could be used in a finite difference calculation. This 

means that in problems involving many independent 

variables (and until that date, three was many) the 

mesh employed was necessarily coarse. Therefore in 

order to get reasonable accurate final results one 

needed to employ highly accurate difference 

approximations. The purpose of their work was also 

set up and analysis such difference schemes for 

solving the initial value problem for first order 

symmetric hyperbolic systems of partial differential 

equation in two space variables. 

[3] proposed a new approach for numerically 

solving the continuity equation which yielded 

physically reasonable results even in circumstances 

where standard algorithms failed. This approach, 

called Flux-Corrected Transport (FCT), led to a 

class of Eulerian finite-difference algorithms which 
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strictly enforced the non-negative property of 

realistic mass and energy densities. As a result steep 

gradients and shocks could be handled particularly 

well. The method required no special knowledge 

about the solution and all internal grid points in the 

calculation were treated identically. 

[4] developed an implicit finite-difference 

scheme for the numerical solution of the 

compressible Navier-Stokes equations in 

conservation-law form. The algorithm was second-

order-time accurate, non-iterative and spatially 

factored. In order to obtain an efficient factored 

algorithm, the spatial cross derivatives were 

evaluated explicitly. However, the algorithm was 

unconditionally stable and, although a three-time-

level scheme, requires only two time levels of data 

storage. The algorithm was constructed in a “delta” 

form (i.e., increments of the conserved variables and 

fluxes) that provided a direct derivation of the 

scheme and led to an efficient computational 

algorithm. In addition, the delta form had the 

advantageous property of a steady state (if one 

existed) independent of the size of the time step. 

Numerical results were presented for a two-

dimensional shock boundary-layer interaction 

problem. 

[5] emphasized the important developments that 

occurred in numerical methods in recent years. 

Chief among them had been the development of 

non-iterative implicit methods for solving the 

compressible Navier-Stokes equations. These 

methods, not subject to conventional explicit 

stability conditions, have significantly improved 

computational efficiency over the earlier explicit 

methods. However, their time step sizes are still 

frequently limited by severe accuracy and stability 

criteria, and their computer time per step, as well as 

their programming complexity, is much larger than 

that of the explicit methods. The goal of his research 

was to develop a method for solving the 

compressible form of the Navier-Stokes equations at 

high Reynolds number that is unconditionally 

stable, computationally more efficient than existing 

methods, and simple and straightforward to 

program. The method contained two stages. The 

first stage used the explicit predictor/corrector finite 

difference method presented by the author in 1969. 

The generated finite-difference equations 

approximated the governing equations of fluid flow 

to second-order accuracy in space and time, were 

simple to program, but were subjected to restrictive 

explicit stability conditions. The second stage 

removed these stability conditions by transforming 

numerically the equations of the first stage into an 

implicit form. The resulting matrix equations to be 

solved were either upper or lower block two-

diagonal equations and were solved more easily 

than the block three-diagonal matrix equations of 

existing implicit methods. 

[6] reformulated a one-parameter family of 

second-order explicit and implicit total variation 

diminishing (TVD) schemes so that a simpler and 

wider group of limiters was included. The resulting 

scheme could be viewed as a symmetrical algorithm 

with a variety of numerical dissipation terms that 

were designed for weak solutions of hyperbolic 

problems. This was a generalization of the work of 

[7-8] to a wider class of symmetric schemes other 

than [2]. The main properties of this class of 

schemes were that they could be implicit, and, when 

steady-state calculations were sought, the numerical 

solution was independent of the time step. 

Numerical experiments with two-dimensional 

unsteady and steady-state airfoil calculation showed 

that the proposed symmetric TVD schemes were 

quite robust and accurate. 

This work aims to describe the numerical 

implementation of the [1], [2]/TVD, [3-5], on a 

finite volume and structured spatial discretization 

contexts, to solve the Euler equations in two-

dimensions. The [2] algorithm was implemented 

according to the TVD formulation of [6]. The [4] 

scheme was implemented only in its explicit 

version. Hence, it is possible to distinguish four 

categories of algorithms studied in this work: 

symmetrical ([1; 4]), FCT ([3]), Predictor/Corrector 

([5]) and TVD ([2]). They are applied to the solution 

of the steady state problem of the moderate 

supersonic flow along a compression corner. A 

spatially variable time step procedure is employed 

to accelerate the convergence of the numerical 

methods to the steady state condition. This 

procedure has a meaningful gain in terms of 

convergence ratio, as reported by [9-10]. The results 

have demonstrated that the [4] scheme, using the 

nonlinear dissipation operator, provides the best 

results in terms of quality (good capture of shock 

wave thickness and wall pressure profile) and 

quantity (good prediction of the oblique shock wave 

angle). 

 

 

2 Euler Equations 
The fluid movement is described by the Euler 

equations, which express the conservation of mass, 

of linear momentum and of energy to an inviscid, 

heat non-conductor and compressible mean, in the 

absence of external forces. In the integral and 

conservative forms, these equations can be 

represented by: 
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yexe

V
dSnFnEQdVt ,          (1) 

where Q is written to a Cartesian system, V is a cell 

volume, nx and ny are the Cartesian components of 

the normal unity vector to the flux face, S is the 

surface area and Ee and Fe represent the components 

of the convective flux vector. Q, Ee and Fe are 

represented by: 
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being  the fluid density; u and v the Cartesian 

components of the velocity vector in the x and y 

directions, respectively; e the total energy; and p the 

static pressure. 

 In the studied problem, the Euler equations were 

nondimensionalized in relation to the freestream 

density, , and in relation to the freestream speed 

of sound, a. The matrix system of the Euler 

equations is closed with the state equation of a 

perfect gas: 

                       )(5.0)1( 22 vuρeγp                  (3) 

 

and   being the ratio of specific heats, 

assuming the value 1.4 to “cold gas flow”. The 

total enthalpy is determined by   ρpeH  . 

 

 

3 [1] Algorithm 
The [1] scheme is a symmetrical one, first order 

accurate. The convective flux vector is obtained by 

arithmetical average between the flux vectors that 

shared a flux interface. Hence, it is possible to write: 

 

   
 LR EEE  5.0int    and    LR FFF  5.0int     (4) 

 

where ER and EL are the right and left convective or 

Euler flux vectors which shared an interface. These 

flux vectors are obtained by Eq. (2). Hence, the 

convective flux vector at an interface is defined by: 

 

          jiji yjixjiji SFSEF
,2/1,2/1 ,2/1,2/1,2/1          (5) 

 

with:  

 

             jixjixx SnSnS
jiji ,2/1,2/1 ,2/1,2/1  

 ;          (6) 

               jiyjiyy SnSnS
jiji ,2/1,2/1 ,2/1,2/1  

 ;          (7) 

    22 yxynx  , 22 yxxn y  ;  (8) 

                        22 yxS                          (9) 

 

and x and y are determined conform presented in 

Tab. 1. 

 

Table 1. Values of x and y to each interface. 

 

Interface x y 

i,j-1/2 jiji xx ,,1   jiji yy ,,1   

i+1/2,j jiji xx ,11,1    jiji yy ,11,1    

i,j+1/2 1,11,   jiji xx  1,11,   jiji yy  

i-1/2,j 1,,  jiji xx  1,,  jiji yy  

 

A computational cell, with its flux interfaces and 

nodes is presented in Fig. 1. 

 
Figure 1. Computational cell: its interfaces, 

nodes and centroid. 

 

As the algorithm is symmetrical, an artificial 

dissipation operator should be incorporated to the 

convective calculation. In 1954, when this algorithm 

was suggested, only a dissipation operator of second 

order was necessary to become the scheme stable. 

This dissipation proportioned the convergence of the 

algorithm, but a great amount of dissipation was 

provided for the algorithm. As conclusion, the 

scheme was only first order accurate. To improve 

the order of accuracy of this scheme, [1] suggested a 

viscosity correction to be considered in an anti-

dissipative term. 

 

3.1 Artificial Dissipation and Viscosity 

Correction 
The artificial dissipation model employed on a finite 

volume context and according to the description 

above is: 
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 .425.0 ,,11,,11,,,
2
,, jijijijijijijijiji QQQQQtVdD    

(10)
 

 

This term is equivalent to the dissipation provided 

by the finite difference model of [1], in the two-

dimensional case. To eliminate the excess of 

dissipation conceded by this operator, a viscosity 

correction term considered in an anti-dissipative 

operator was employed to obtain asymptotically 

second order of accuracy. This operator is described 

below: 

 

 ,425.0 ,,11,,11,,,, jijijijijijijiji QQQQQtVAD  

(11) 

 

where β is the viscosity correction term and should 

be less than 1.0. The dissipation operator and the 

anti-dissipative operator are very similar. The main 

differences are that: D is subtracted from the 

convective flux balance and AD is added to the 

convective flux balance. The value adopted for β is 

obtained through numerical experiments. The value 

employed in the present study was 0.85. 

 

3.2 Numerical Convective Contribution 
The numerical convective contribution of the (i,j) 

cell, as using the [1] scheme, is finally defined as: 

 

   jijijijijijiji ADDFFFFC ,,2/1,2/1,,2/1,2/1,    (12) 

 

and the residual is defined as: 

 

                             jijijiji CVtR ,,,,  ,             (13) 

 

where ti,j is the spatially variable time step and Vi,j 

is the cell volume. The volume is determined by the 

following expression: 

        jijijijijijijijijiji yxxyxxyxxV ,1,1,1,1,1,11,1,1,, 5.0

      1,1,1,,1,1,11,1,1,5.0   jijijijijijijijiji yxxyxxyxx . 

(14) 

 

 [1] suggested that the anti-dissipative term 

should not be evaluated at each step. Differently, the 

anti-dissipative term should be evaluated only after 

a certain number of iterations performed by the 

algorithm be accomplished. This number of 

iterations is equal to the maximum number of points 

in an specific direction; Moreover, the maximum 

number between “imax” and “jmax”, where imax is 

the maximum number of points in i and jmax is the 

maximum number of points in j, should be the 

number of iterations to evaluate the anti-dissipative 

term. This number of iterations is exactly the 

number of mesh points to an information propagate 

along the mesh, in the most distant boundary. 

  

3.3 Time Integration 
The time integration uses the forward Euler method 

to perform the marching of the solution to the steady 

state. This method is determined as follows: 

 

                                
n

ji
n

ji
n

ji RQQ ,,
1

, 
.                      (15) 

 

This method is first order accurate in time, but as 

the main interest of this work is steady state 

solutions, there is no problem. 

 

 

4 [2] Algorithm 
The [2] TVD (“Total Variation Diminishing”) 

algorithm, second order accurate in space, is 

specified by the determination of the numerical flux 

vector at the (i+1/2,j) interface. The extension of 

this numerical flux to the (i,j+1/2) interface is 

straightforward, without any additional 

complications. 

 Initially is necessary to define the coordinate 

changes from the Cartesian system to a generalized 

coordinate system. The right and left cell volumes, 

as well the interface volume, necessary to 

coordinate change, following the finite volume 

formulation, which is equivalent to a generalized 

coordinate system, are defined as: 

   jiR VV ,1 , jiL VV ,    and    LR VVV  5.0int ,   (16) 

 

where “R” and “L” represent right and left states, 

respectively. The area components at interface are 

defined by: SsS xx
'

int_   and SsS yy
'

int_  , where '
xs  

and '
ys  are defined as: Sss xx 

'  and Sss yy 
' , 

being   5.022
yx ssS  . Expressions to sx and sy, which 

represent the Sx and Sy components always adopted 

in the positive orientation, are given in Tab. 2. 

These normalized area vectors are employed in the 

[2] TVD high resolution scheme. 

 The metric terms to this generalized coordinate 

system are defined as: 

  intint_ VSh xx  , intint_ VSh yy     and   intVShn  .  (17) 

 The calculated properties at the flux interface are 

obtained by arithmetical average or by [11] average. 

The [11] average was used in this work: 
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 RLρρρ int ,    LRLRRL ρρρρuuu  1int ; (18) 

           
   LRLRRL ρρρρvvv  1int ;        (19) 

         
   LRLRRL ρρρρHHH  1int ;      (20) 

               
    2

int
2
intintint 5.01 vuHγa  .          (21) 

 

Table 2. Normalized values of sx and sy. 

 

Interface sx sy 

i,j-1/2  jiji yy ,,1     jiji xx ,,1   

i+1/2,j  jiji yy ,11,1     1,1,1   jiji xx  

i,j+1/2  1,11,   jiji yy   1,1,1   jiji xx  

i-1/2,j  jiji yy ,1,    jiji xx ,1,    

 

The eigenvalues of the Euler equations, in the  

direction, to the convective flux are given by: 

yxcont hvhuU intint  , ncont haUλ int1  , contUλλ  32 ; (22) 

                            ncont haUλ int4  .                     (23) 

  The jumps in the conserved variables, necessary 

to the construction of the [2] TVD dissipation 

function, are given by: 

                LR eeVe  int ,  LR ρρVρ  int ;          (24) 

      LR uρuρVuρ  int   and        LR vρvρVvρ  int .
 

(25) 

 The  vectors to the (i+1/2,j) interface are 

calculated by the following expressions: 

         
 bbaaα  5.01 ,  aaρα 2 ,  ccα 3 ;    (26) 

                             
 bbaaα  5.04 ,                     (27) 

with: 

        vρvuρuρvueaγaa  intint
2
int

2
int

2
int 5.01 ;  (28) 

 
      vρhρvhuhuρhabb yyxx  '

int
'

int
''

int1 ;  (29) 

      
     uρhρvhuhvρhcc yxýx  '

int
'

int
'' ;       (30) 

                  nxx hhh '    and   nyy hhh ' .            (31) 

 

 The [2] TVD dissipation function is constructed 

using the right eigenvector matrix of the Jacobian 

matrix in the normal direction to the flux face. This 

matrix is defined in [12]. 

 In this work, according to [6], five different 

limiters are implemented which incorporate the 

TVD properties to the original [2] scheme. The 

limited dissipation function Q is defined to the five 

options as: 

          1,1modmin,1modmin),(   rrrrQ ;   (32) 

                      rrrrQ ,,1modmin),( ;              (33) 

            rrrrrrQ 5.0,2,2,2modmin),( ;   (34) 

       ,1,2min,0max2,min,1,2min,0max),(   rrrrrQ                                                              

                 12,min r                                     (35) 

                 
1

11
),( 


















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r

rr

r

rr
rrQ ,        (36) 

where: 

  l
ji

l
ji

l

ji ααr ,2/1,2/1,2/1 

    and    l

ji
l

ji

l

ji ααr ,2/1,2/3,2/1 

  , (37) 

“l” assuming values from 1 to 4. Equations (32)-

(34) are referenced by this author as minmod1 

(Min1), minmod2 (Min2) and minmod3 (Min3), 

respectively. Equation (35) is referred in the CFD 

(“Computational Fluid Dynamics”) literature as the 

“Super Bee” limiter due to [13] and Eq. (31) is the 

Van Leer limiter due to[14]. 

 The [2] TVD dissipation function is finally 

constructed by the following matrix-vector product: 

  
       

jijijijiLW αQλQλtRD
,2/1

2
,,2/1,2/1

1


 . (38) 

 The complete numerical flux vector to the 

(i+1/2,j) interface is described by: 

              
  )(

int
)(

int
)(

int
)(

,2/1 5.0 l
LWy

l
x

ll
ji DVhFhEF  ,        (39) 

with: 

         )()()(
int 5.0

l
L

l
R

l
EEE    and   )()()(

int 5.0
l

L
l

R
l

FFF  . (40) 
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 The time integration follows the time splitting 

method, first order accurate, which divides the 

integration in two steps, each one associated with a 

specific spatial direction. In the initial step, it is 

possible to write for the  direction: 

            
 n

ji
n

jijijiji FFVtQ ,2/1,2/1,,
*
,   ;         (41) 

                         
*
,,

*
, ji

n
jiji QQQ  ;                        (42) 

and at the end step,  direction: 

 

  *
2/1,

*
2/1,,,

1
, 
  jijijiji

n
ji FFVtQ ;      (43) 

 

                          
1

,
*
,

1
,

  n
jiji

n
ji QQQ .                    (44) 

 

 

5 [3] FCT Algorithm 
The [3] algorithm can be understood as composed of 

two phases: (1) Generation of an initial solution 

using a simple and practical base algorithm; (2) 

Perform the anti-dissipative phase in the initial 

solution. 

To the base algorithm required in the first phase 

of the [3] FCT scheme, the authors recommend the 

[15] algorithm. Hence, the base algorithm can be 

described in finite volumes by: 

 

Predictor step: 

 

                                 
n

jiinit QQ , ;                            (45) 

                  
n
ji

n
ji

n
ji

n
ji

n
ji FFFFC ,1,,1,,   ;                (46) 

                     
n

jijiji
n

jiji CVtQQ ,,,,
*
,  ,              (47) 

 

where: 
 

       

  

































s

ys

xs

s

n
ji

qpe

pSvq

pSuq

q

F ,    and   yxs vSuSq  ,   (48) 

 

with Sx and Sy described by Eqs. (6)-(7). 

 

Corrector step: 

 

                    
*

,1
*
,

*
,

*
1,

*
, jijijijiji FFFFC   ;               (49) 

 

                
 *

,,,
*
,

1
, 5.0 jijijijiinit
n

ji CVtQQQ  .         (50) 

The residual is defined as the arithmetical average 

between ji
n

ji VC ,,  and jiji VC ,
*
, . The base 

solution is therefore: 

 

                                 
Macn

jiji QQQ  1
,

**
, .                 (51) 

 

Defined the base solution, the next step is construct 

the anti-dissipative phase. The anti-dissipative phase 

follows the following sequence of steps: 

(1) Define the constants: 0 = 1/6, 1 = 1/3 and 2 = 

-1/6; 

(2) Assume n
jiinit QQ , ; 

(3) Call the MacCormack algorithm to determine 

the base solution; 

(4) Define uint and vint at the four interfaces of a 

computational cell. u and v are determined using 

the values of initQ  and uint and vint are obtained 

by arithmetical average between the cell under 

study and its neighbors; 

(5) Define the speed of sound at the four neighbors; 

(6) Determine the maximum eigenvalue of the 

Euler equations at the four interfaces: 
 

                     
avuq  2

int
2
int

max
int ;                 (52) 

 

(7) Determine  2,
max
int10int jitqv   to the four 

interfaces; 

 

(8) Calculate the diffusive flux vector: 

 

             int
1,

int
,)2/1,(

)2/1,(



 jijiji

ji
D QQvF ;      (53) 

             int
,

int
,1),2/1(

),2/1(
jijiji

ji
D QQvF  
 ;      (54) 

                   int
,

int
1,)2/1,(

)2/1,(
jijiji

ji
D QQvF  

 ;       (55) 

             int
,1

int
,),2/1(

),2/1(
jijiji

ji
D QQvF 


 .       (56) 

 

(9) Diffuse the solution: 

 

  
 )2/1,()2/1,(),2/1(),2/1(**

,
***

,
  ji

D
ji

D
ji

D
ji

Djiji FFFFQQ   (57) 

 

(10) Do ***
,, ji

n
ji QQ   and imposes the boundary 

conditions; 

(11) Do n
jiji QQ ,

***
,   and calculate the anti-

diffusive flux – FCT; 

(12) Repeat steps (4)-(6); 

(13) Determine  2,
max
int20int jitq  ; 

(14) Calculate the anti-diffusive flux: 
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             **
1,

**
,)2/1,(

)2/1,(



 jijiji

ji
AD QQF ;      (58) 

             **
,

**
,1),2/1(

),2/1(
jijiji

ji
AD QQF  
 ;      (59) 

                   **
,

**
1,)2/1,(

)2/1,(
jijiji

ji
AD QQF  

 ;       (60) 

             **
,1

**
,),2/1(

),2/1(
jijiji

ji
AD QQF 


 .       (61) 

 

(15) Determine the corrective flux at each 

interface: 

 

Interface (i,j-1/2): 

 

                  ***
2,

**
1,2/3,   jijiji QQQ ;            (62) 

                    ***
,

**
1,2/1, jijiji QQQ   .             (63) 

 

       The corrective anti-diffusive or anti-dissipative 

flux is calculated in vector form by: 

 

 ,,0.0 2/3,
)2/1,(

signalQMINMAXsignalF ji
ji

cad  
  

             signalQF ji
ji

AD  


2/1,
)2/1,(

, ,            (64) 

 

where: signal is a vector assuming values 1.0 or       

-1.0: If )2/1,(
,
ji
lADF ≥ 0.0 => signall = 1.0 or -1.0 

otherwise; “l” is an index referring to the vector 

components. 

 

Interface (i+1/2,j): 

 

                   ***
,1

**
,,2/1 jijiji QQQ   ;               (65) 

                  ***
,1

**
,2,2/3 jijiji QQQ   .            (66) 

 

       The corrective anti-diffusive or anti-dissipative 

flux is calculated in vector form by: 

 

 ,,0.0 ,2/1
),2/1( signalQMINMAXsignalF ji

ji
cad  
  

             signalQF ji
ji

AD  


,2/3
),2/1(

, ,           (67) 

 

where: signal is a vector assuming values 1.0 or       

-1.0: If ),2/1(
,

ji
lADF

 ≥ 0.0 => signall = 1.0 or -1.0 

otherwise; “l” is an index referring to the vector 

components. 

 

Interface (i,j+1/2): 

 

                   ***
1,

**
,2/1,   jijiji QQQ ;               (68) 

                 ***
1,

**
2,2/3,   jijiji QQQ ;             (69) 

 

       The corrective anti-diffusive or anti-dissipative 

flux is calculated in vector form by: 

 

 ,,0.0 2/1,
)2/1,( signalQMINMAXsignalF ji

ji
cad  

  

             signalQF ji
ji

AD  


2/3,
)2/1,(

, ,           (70) 

 

where: signal is a vector assuming values 1.0 or       

-1.0: If )2/1,(
,
ji
lADF ≥ 0.0 => signall = 1.0 or -1.0 

otherwise; “l” is an index referring to the vector 

components. 

 

Interface (i-1/2,j): 

 

                  ***
,2

**
,1,2/3 jijiji QQQ   ;                   (71) 

                    ***
,

**
,1,2/1 jijiji QQQ   .                   (72) 

 

       The corrective anti-diffusive or anti-dissipative 

flux is calculated in vector form by: 

 

 ,,0.0 ,2/3
),2/1( signalQMINMAXsignalF ji

ji
cad  
  

              signalQF ji
ji

AD  


,2/1
),2/1(

, ,           (73) 

 

where: signal is a vector assuming values 1.0 or       

-1.0: If ),2/1(
,

ji
lADF

 ≥ 0.0 => signall = 1.0 or -1.0 

otherwise; “l” is an index referring to the vector 

components. 

 

(16) Determine the new value of Qi,j: 

 

The new value of Qi,j is obtained from the 

following scheme: 

 

 )2/1,()2/1,(),2/1(),2/1(***
,

1
,

 
ji

cad
ji

cad
ji

cad
ji

cadji
n

ji FFFFQQ . (74) 

 

 

6 [4] Algorithm 
The [4] scheme is a symmetrical algorithm. Its 

discretization, on a finite volume context, is 

centered and artificial dissipation is needed to 

guarantee convergence to the steady state solution. 

Two dissipation operators are studied in this work: a 

linear and a non-linear, both defined according to 

[16] work. 

On a finite volume context, it is necessary to 

determine the convective flux vectors Ee and Fe 

written to a generalized system at the centroid of the 

cell under study. Hence, the metric terms are 

defined as arithmetical average between the metric 
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terms in each flux interface. With this in mind, one 

can write the convective flux vectors as: 

 

                    



































n

yn

xn

n

average

vpe

phvv

phuv

v

VE

)(

,                 (75) 

where, for instance,  jijiaverage VVV ,2/1,2/15.0    to 

the (i+1/2,j) flux interface. The same analysis is 

valid to the F flux interface, only changing the 

metric terms at the cell(i,j). 

 

6.1 Dissipation Models 
Two types of dissipation models are analyzed in this 

work: one linear and one non-linear, both isotropic. 

They were suggested by [16]. 

 

6.1.1  Linear Dissipation Model 

The linear dissipation model of [16] distributes 

dissipation of uniform way in the field. As the 

dissipation is provided uniformly in each direction, 

without have a weighting coefficient to better 

evaluate the effects of non-linearity in the field, it is 

isotropic. The operator is a fourth order in the 

interior domain, being second order at the 

boundaries. To the internal domain, its format is 

described below: 

 

   
n

ji
n

ji
n

ji
n

ji
n

jiji
L

ji QQQQQVeeD ,2,1,,1,2,, 464

           n
ji

n
ji

n
ji

n
ji

n
ji QQQQQ 2,1,,1,2, 464        (76) 

 

To the boundaries, considering for instance the 

entrance boundary (“i” direction), one has: 

 

            n
ji

n
ji

n
jiji

L

ji
QQQVeeD ,1,,1,,

2   ,        (77) 

 

with an equivalent expression to the “j” direction. 

 

6.1.2  Non-Linear Dissipation Model 

The non-linear model is employed specifically to 

determine non-linear instabilities, like shock waves, 

and is also isotropic. It needs the determination of a 

pressure sensor to detect shock waves. Hence, for 

the  direction, one has: 
 

 jijijijijijiji
pppppp ,1,,1,1,,1,

22 


 ,  (78) 

 

with an equivalent expression obtained by the  

direction. The next step is to define ’s terms that 

determine the amount of dissipation to be provided 

by the dissipation model. To the  direction, it is 

possible to write: 

 

 



  jijijijiji MAXtk ,1,,1,

)2()2(
, ,, ;  (79) 

           )2(
,,

)4()4(
, ,0.0 jijiji tkMAX   ;       (80) 

 

an equivalent expression to  is valid. After that, the 

spectral ratio of the Euler equations in a generalized 

coordinate system is determined: 

 

                njinnjinji havhav ,,, ,           (81) 

 

with: 

 

   
jiyjixn vhuhv

,,
    and     

jiyjixn vhuhv
,,

  , (82) 

 

hx, hy and hn defined according to Eq. (17). The next 

step consists in determine the non-linear dissipation 

operators. Considering the  direction, one has: 

 

                jijijiji VV ,1,1,,1 5.0  ;           (83) 

                jijijiji VV ,1,1,,2 5.0  .            (84) 

 

To the internal domain, it is possible to write: 

 

    
n

ji
n

ji
n

jiji
n

ji
n

jiji
NL

ji QQQQQD ,,1,2
)4(

,,,1
)2(

,1, 33

     
n

ji
n

ji
n

jiji
n

ji
n

jiji
n

ji QQQQQQ ,1,,1
)4(
,1,1,

)2(
,12,1 33

n
jiQ ,2                                                                  (85) 

 

To the boundaries, one has: 

 

     n
ji

n
jiji

n
ji

n
jiji

NL
ji QQQQD ,1,

)2(
,12,,1

)2(
,1,   . 

(86) 

 

6.2 Numerical Algorithm 
The residual of the [4] scheme is defined as: 

  

     ji
L

ji
n
ji

n
ji

n
ji

n
ji

n
ji VDFFEER ,,1,1,,1,1, 5.0   , (87) 

 

using the linear dissipation operator Eqs. (76)-(77). 

 

 
   jiji

NL
ji

n
ji

n
ji

n
ji

n
ji

n
ji VtDFFEER ,,,1,1,,1,1, 5.0   , (88) 

 

using the non-linear dissipation operator Eqs. (85-

86). The time marching method is the first order 

forward Euler one and results in: 
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                        n
jiji

n
ji

n
ji RtQQ ,,,
1

,  ,                   (89) 

 

 

7 [5] Algorithm 
The [5] algorithm is a hybrid scheme that alternate 

between an explicit and implicit methods, 

depending of the employed CFL number. For CFL 

number less than 1.0, the scheme employs the [15] 

algorithm and when the CFL number is more than 

1.0, the scheme is a two-diagonal implicit algorithm, 

where the RHS (“Right Hand Side”) is constructed 

by the [15] scheme. Hence, the first step is to 

calculate the [15] convective flux balance. This 

balance is described by Eqs. (45)-(50). 

 The [5] algorithm starts defining the explicit 

correction in the predictor step: 

 

                           n
jijijie CVtdq ,,,

*  .                 (90) 

 

After that, it calculates the implicit RHS to the  

direction: 

 

                  
jiiji

Mac
jijie dqAtdqW

,1
*

,2/1,,
*

  ,   (91) 

 

where the matrix  MacA  is defined as: 

 

                                 1 TDATAMac                  (92) 

 

with: 

 

 T and T
-1

 being similarity matrices and DA being 

a diagonal matrix composed of the Euler 

eigenvalues in  direction; Expressions to T and T
-1

 

are given as follows: 

   
   

  




































































θa
γ

aφ
αθa

γ

aφ
αvhuhρ

γ

φ

ahvαahvαρhv

ahuαahuαρhu

αα

T

xy

yyx

xxy

~

1

~

11

01

int

2
int

2

int

2
int

2

int
'

int
'

int

2

int
'

intint
'

intint
'

int

int
'

intint
'

intint
'

int

; 

(93) 

 intint 2aρα  ,  intint21 aρβ  ,  
2

1
2
int

2
int2 vu

γφ


 ,  (94) 

                             int
'

int
'~

vhuhθ yx  ;                     (95) 

 

   

         

         







































111
~

111
~

0

1
111

intint
'

intint
'

int
2

intint
'

intint
'

int
2

int

'

int

'

int

int
'

int
'

2
int

2
int

int

2
int

int

2
int

2

1

γβvγahβuγahβθaφβ

γβvγahβuγahβθaφβ

ρ

h

ρ

h

ρ

vhuh

a

γ

a

v
γ

a

u
γ

a

φ

T

yx

yx

xyxy
. 

(96) 

 

The properties defined at interface are calculated by 

arithmetical average. The normalized metric terms 

are defined in Section 4. The expression to DA is as 

follows: 

 

 

























nn

nn

n

n

hav

hav

v

v

DA

intint

intint

int

int

000

000

000

000

,  (97) 

 

with yxn hvhuv intintint


 
being the normal velocity at 

interface. The metric terms are defined in Section 4. 

Continuing the algorithm, the next step is to 

determine the solution of the two-diagonal system. 

Defining a vector {Prod} and a matrix [Term], one 

has: 

 

                         jijiji WTod ,,2/1
1

,Pr  
 ;               (98) 

                        jijiji DAtITerm ,2/1,,  .             (99) 

 

Now, it is possible to determine the vector Y as: 

 

                            jijiji odTermY ,,
1

, Pr  ,            (100) 

 

where: 

 

   jiTerm ,
1  is a diagonal matrix of easy inversion.  

 

 The implicit correction is obtained by the 

following matrix-vector product: 

 

                             jijijii YTdq ,,2/1,
*                   (101) 

 

As the sweep along the mesh starts at the i = imax-1, 

it is adopted that   0.0
max,

* 
jiidq  at this cell, which is 

a ghost cell. Finished the  flux, it calculates now 

the implicit RHS to the  direction: 
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               
1,

**
2/1,,,

*
 

jiiji
Mac

jijii dqBtdqW ,   (102) 

 

where the matrix  MacB  is defined as:  

 

                             1 TDBTBMac ,              (103) 

 

with T and T
-1

 being similarity matrices and DB 

being a diagonal matrix composed of the Euler 

eigenvalues in the  direction. The same matrices 

defined by Eqs. (93-97) are employed considering 

the  direction. Continuing the algorithm, the next 

step is to determine the solution of the two-diagonal 

system. Defining a vector {Prod} and a matrix 

[Term], one has: 

 

                         jijiji WTod ,2/1,
1

,Pr  
 ;             (104) 

                        2/1,,,  jijiji DBtITerm .           (105) 

 

Now, it is possible to determine the vector Y as: 

 

                           jijiji odTermY ,,
1

, Pr  ,             (106) 

 

The implicit correction is obtained by the following 

matrix-vector product: 

 

                            jijijii YTdq ,2/1,,
**                   (107) 

 

As the sweep along the mesh starts at the j = jmax-1, 

it is adopted that   0.0
max,

** 
jiidq  at this cell, which 

is a ghost cell. Finally, the predictor correction is 

estimated as    
jiiQ dqp ,

**  and the new vector of 

conserved variables is determined as: 

 

                              
jip

n
jiji QQQ

,,
*
,  .                  (108) 

 

This finishes the predictor step. Now, it is necessary 

to determine the correction in the corrector step. It is 

done as follows: 

 

                          *
,,,

*
jijijie CVtdq  .                (109) 

 

After that, it calculates the implicit RHS to the  

direction: 

 

               
jiiji

Mac
jijie dqAtdqW

,1
*

,2/1,,
*

  ,    (110) 

 

where the matrix  MacA  is defined as done in the 

predictor step, Eq. (92), calculated now in the (i-

1/2,j) interface. Defining a vector {Prod} and a 

matrix [Term], one has: 

 

                         jijiji WTod ,,2/1
1

,Pr  
 ;             (111) 

                        jijiji DAtITerm ,2/1,,  .           (112) 

 

Now, it is possible to determine the vector Y as: 

 

                          jijiji odTermY ,,
1

, Pr  .              (113) 

 

The implicit correction is obtained by the following 

matrix-vector product: 

 

                              jijijii YTdq ,,2/1,
*   .               (114) 

 

As the sweep along the mesh starts at the i = 1, it is 

adopted that   0.0
,0

* 
jidq  at this cell, which is a 

ghost cell. Finished the  flux, it calculates now the 

implicit RHS to the  direction: 

 

                
1,

**
2/1,,,

*
 

jiiji
Mac

jijii dqBtdqW ,  (115) 

 

where the matrix  MacB  is defined as done in the 

predictor step [Eq. (103)], calculated now in the (i,j-

1/2) interface. Continuing the algorithm, the next 

step is to determine the solution of the two-diagonal 

system. Defining a vector {Prod} and a matrix 

[Term], one has: 

 

                         jijiji WTod ,2/1,
1

,Pr  
 ;             (116) 

                        2/1,,,  jijiji DBtITerm .           (117) 

 

Now, it is possible to determine the vector Y as: 

 

                            jijiji odTermY ,,
1

, Pr  .            (118) 

 

The implicit correction is obtained by the following 

matrix-vector product: 

 

                              jijijii YTdq ,2/1,,
**   .             (119) 

 

As the sweep along the mesh starts at the j = 1, it is 

adopted that   0.0
0,

** 
iidq  at this cell, which is a 

ghost cell. Finally, the corrector value is estimated 

as    
jiiQ dqc ,

**  and the new vector of conserved 

variables is determined as: 
 

               
jicjiinit

n
ji QQQQ

,
*
,

1
, 5.0 

.     (120) 
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The residual is defined as the arithmetical average 

between  
ji

Q
p ,

  and  
ji

Q
c ,

 . 

 

8 Spatially Variable Time Step 
The basic idea of this procedure consists in 

keeping constant the CFL number in all 

calculation domain, allowing, hence, the use of 

appropriated time steps to each specific mesh 

region during the convergence process. Hence, 

according to the definition of the CFL number, 

it is possible to write: 

                             jijiji csCFLt ,,,  ,              (121) 

 

where: CFL is the “Courant-Friedrichs-Lewy” 

number to provide numerical stability to the 

scheme;   jiji avuc ,

5.022
, 




   is the maximum 

characteristic speed of information propagation in 

the calculation domain; and   jis ,  is a characteristic 

length of information transport. On a finite volume 

context,   jis ,  is chosen as the minor value found 

between the minor centroid distance, involving the 

(i,j) cell and a neighbor, and the minor cell side 

length. 

 

 

9 Initial and Boundary Conditions 
 

9.1 Initial Conditions 
Values of freestream flow are adopted for all 

properties as initial condition, in the whole 

calculation domain, to the studied problem in this 

work ([17-18]): 

    TMγγθMθMQ 25.0)1(1sincos1   , (122) 

 

where M represents the freestream Mach number 

and  is the flow attack angle. 

 

9.2 Boundary Conditions 
The boundary conditions are basically of three 

types: solid wall, entrance and exit. These 

conditions are implemented in special cells named 

ghost cells. 
(a) Wall condition: This condition imposes the flow 

tangency at the solid wall. This condition is satisfied 

considering the wall tangent velocity component of 

the ghost volume as equals to the respective velocity 

component of its real neighbor cell. At the same 

way, the wall normal velocity component of the 

ghost cell is equaled in value, but with opposite 

signal, to the respective velocity component of the 

real neighbor cell. 
 The pressure gradient normal to the wall is 

assumed be equal to zero, following an inviscid 

formulation. The same hypothesis is applied to the 

temperature gradient normal to the wall, considering 

adiabatic wall. The ghost volume density and 

pressure are extrapolated from the respective values 

of the real neighbor volume (zero order 

extrapolation), with these two conditions. The total 

energy is obtained by the state equation of a perfect 

gas. 

(b) Entrance condition: 

(b.1) Subsonic flow: Three properties are specified 

and one is extrapolated, based on analysis of 

information propagation along characteristic 

directions in the calculation domain [18]. In other 

words, three characteristic directions of information 

propagation point inward the computational domain 

and should be specified. Only the characteristic 

direction associated to the “(qnormal-a)” velocity 

cannot be specified and should be determined by 

interior information of the calculation domain. 

Pressure was the extrapolated variable to the present 

problem. Density and velocity components had their 

values determined from the freestream flow 

properties. The total energy per unity fluid volume 

is determined by the state equation of a perfect gas. 

(b.2) Supersonic flow: All variables are fixed with 

their freestream flow values. 

(c) Exit condition: 

(c.1) Subsonic flow: Three characteristic directions 

of information propagation point outward the 

computational domain and should be extrapolated 

from interior information [18]. The characteristic 

direction associated to the “(qnormal-a)” velocity 

should be specified because it penetrates the 

calculation domain. In this case, the ghost volume’s 

pressure is specified by its freestream value. Density 

and velocity components are extrapolated and the 

total energy is obtained by the state equation of a 

perfect gas. 

(c.2) Supersonic flow: All variables are extrapolated 

from the interior domain due to the fact that all four 

characteristic directions of information propagation 

of the Euler equations point outward the calculation 

domain and, with it, nothing can be fixed. 
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10 Results 
Tests were performed in a notebook with processor 

Pentium Dual Core, 2.3GHz of clock and 3,0 

Gbytes of RAM memory. The criterion adopted in 

this work to obtain convergence considers a 

reduction of 4 orders in the magnitude of the 

maximum residual in the domain, a typical criterion 

in the CFD community. In the compression corner 

problem, the entrance angle was set equal to 0.0. 
 Figure 1 shows the compression corner 

configuration, whereas the Figure 2 exhibits the 

compression corner mesh. This mesh is composed 

of 3,381 rectangular cells and 3,500 nodes or, in 

finite differences, 70x50 points. The freestream 

Mach number was adopted with the value of 3.0, a 

moderate supersonic flow, where the perfect gas 

hypothesis is valid. 

 
Figure 2. Compression corner configuration. 

 
Figure 3. Compression corner mesh. 

 

 Figures 4 to 13 shows the pressure contours 

obtained by the [1] scheme, the [2] TVD scheme, in 

its five variants, the [3] scheme, the [4] scheme, in 

its two variants, and the [5] scheme. For convention, 

the present author adopts the following abbreviation 

to the schemes: [1] (LF), [2] using minmod1 limiter 

(LW-Min1), [2] using minmod2 limiter (LW-Min2), 

[2] using minmod3 limiter (LW-Min3), [2] using 

Super Bee limiter (LW-SB), [2] using Van Leer 

limiter (LW-VL), [3] (BB), [4] using the linear 

dissipation operator (BW-L), [4] using the nonlinear 

dissipation operator (BW-NL), and [5] (M). 

Examining these figures, the most severe pressure 

field is that obtained by the LW-SB scheme. The 

lowest shock wave thickness is observed in the LW-

SB, BB and BW-NL schemes. The LW-SB, BW-L 

and M present pressure oscillations in their 

solutions, which damage severely their behavior. 

 
Figure 4. Pressure contours (LF). 

 
Figure 5. Pressure contours (LW-Min1). 

 

 Figure 14 exhibits the wall pressure distributions 

of all schemes tested in this work. They are 

compared with the oblique shock wave theoretical 

solution. It is possible to highlight that the best 

pressure distribution, close to the theoretical result is 

obtained by the BW-NL scheme. Figure 15 shows 

the same wall pressure distributions, plotted now 

with symbols to illustrate in number of points 

necessary to capture the shock discontinuity. The 

BW-NL scheme captured the shock discontinuity 

using two cells. Other schemes also capture the 

shock discontinuity using two cells, but the best 

pressure distribution was due to the BW-NL. 
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Figure 6. Pressure contours (LW-Min2). 

 
Figure 7. Pressure contours (LW-Min3). 

 
Figure 8. Pressure contours (LW-SB). 

 

 One way to quantitatively verify if the solutions 

generated by each scheme are satisfactory consists 

in determining the shock angle of the oblique shock 

wave, , measured in relation to the initial direction 

of the flow field. [19] (pages 352 and 353) presents 

a diagram with values of the shock angle, , to 

oblique shock waves. The value of this angle is 

determined as function of the freestream Mach 

number and of the deflection angle of the flow after 

the shock wave, . 

 
Figure 9. Pressure contours (LW-VL). 

 
Figure 10. Pressure contours (BB). 

 
Figure 11. Pressure contours (BW-L). 
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Figure 12. Pressure contours (BW-NL). 

 
Figure 13. Pressure contours (M). 

 
Figure 14. Wall pressure distributions. 

 

 To the compression corner problem,  = 10º 

(ramp inclination angle) and the freestream Mach 

number is 3.0, resulting from this diagram a value to 

 equals to 27.5º. Using a transfer in Figures 4 to 

13, it is possible to obtain the values of  to each 

scheme, as well the respective percentage errors, 

shown in Tab. 3. 

 
Figure 15. Wall pressure distributions. 

 

Table 3. Shock angle of the oblique shock wave 

and percentage errors. 

 

Algorithm  () Error (%) 

LF 28.0 1.82 

LW-Min1 27.4 0.36 

LW-Min2 27.2 1.09 

LW-Min3 26.3 4.36 

LW-SB 26.2 4.73 

LW-VL 27.1 1.45 

BB 27.2 1.09 

BW-L 27.3 0.73 

BW-NL 27.6 0.36 

M 26.4 4.00 

 

As can be seen, the best value of the shock angle is 

obtained with the LW-Min1 and BW-NL schemes. 

Both schemes presented errors inferior to 0,50%. As 

the BW-NL scheme had the best behavior in the 

wall pressure distribution, it is chosen as the best 

scheme in quality and quantity terms. 

 

 

11 Conclusions 
This work aims to describe the numerical 

implementation of the [1], [2] TVD, [3], [4] and [5] 

algorithms, on a finite volume and structured spatial 

discretization contexts, to solve the Euler equations 

in two-dimensions. The [2] algorithm was 

implemented according to the TVD formulation of 

[6]. The [4] scheme was implemented only in its 

explicit version. Hence, it is possible to distinguish 

four categories of algorithms studied in this work: 

symmetrical ([1]; [4]), FCT ([3]), Predictor / 

Corrector ([5]) and TVD ([2]). They are applied to 

the solution of the steady state problem of the 
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moderate supersonic flow along a compression 

corner. A spatially variable time step procedure is 

employed to accelerate the convergence of the 

numerical methods to the steady state condition. 

This procedure has a meaningful gain in terms of 

convergence ratio, as reported by [9-10]. The results 

have demonstrated that the [4] scheme, using the 

nonlinear dissipation operator, provides the best 

results in terms of quality (good capture of shock 

wave thickness and wall pressure profile) and 

quantity (good prediction of the oblique shock wave 

angle). An error of 0.50% is considered excellent. 
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